Аннотация:
Природные катастрофы, связанные с водой, являются одними из наиболее разрушительных и ответственны за 72% от общего экономического ущерба, причиненного стихийными бедствиями, а в связи с изменениями климата их количество будет только расти. В России главной такой катастрофой являются речные паводки. Цель данной исследовательской работы определить наилучший метод машинного обучения для предсказания паводков на реке Амур, где они наносят значительный ущерб населению и экономике региона. Исследование предпринято с целью улучшения методов прогнозирования паводков для последующего использования результатов исследования в решении задач управления при реагировании на паводки. В исследовании учитываются практические аспекты реализации системы прогнозирования, поэтому были изучены 3 наиболее популярных метода машинного обучения: линейная регрессия, нейронная сеть и градиентный бустинг, потому что эти методы обладают развитой экосистемой вспомогательных решений и широко известны в профессиональном сообществе. Методология исследования была нацелена на достижение максимальной сравнимости результатов. Среди проверенных алгоритмов наилучшее качество продемонстрировал градиентный бустинг над деревьями в реализации Catboost. Результаты исследования применимы и к другим рекам, по которым количество данных сравнимо с Амуром.
Ключевые слова:управление катастрофами, предсказание паводков, река Амур, машинное обучение.