Аннотация:
Статья посвящена решению задачи определения границ автотранспортного средства на изображении, как промежуточного этапа для решения других, более локальных задач, связанных с идентификацией автотранспорта на изображении или в видео потоке. В статье подробно рассматриваются существующие методы и подходы к решению задач компьютерного зрения, в том числе современные архитектуры нейронных сетей. В качестве основной модели была выбрана сверточная нейронная сеть Tiny-YOLO-InceptionResNet, которая была модифицирована в процессе проведения исследования. Архитектура полученной нейронной сети приведена в данной работе. Перед обучением нейронной сети производилась работа по подготовке и предобработке набора данных, которая позволила более рационально использовать вычислительные ресурсы во время обучения. В результате проведенного исследования была разработана модель нахождения границ автотранспортного средства на изображении, точность которой равна 88%.