RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерная оптика // Архив

Компьютерная оптика, 2022, том 46, выпуск 1, страницы 139–159 (Mi co1002)

Эта публикация цитируется в 61 статьях

ОБРАБОТКА ИЗОБРАЖЕНИЙ, РАСПОЗНАВАНИЕ ОБРАЗОВ

Обнаружение объектов на изображении: от критериев Байеса и Неймана–Пирсона к детекторам на базе нейронных сетей EfficientDet

Н. А. Андрияновa, В. Е. Дементьевb, А. Г. Ташлинскийb

a Финансовый университет при Правительстве Российской Федерации, г. Москва
b Ульяновский государственный технический университет

Аннотация: Актуальность задач обнаружения и распознавания объектов на изображениях и их последовательностях с годами только возрастает. За последние несколько десятилетий предложено огромное количество подходов и методов обнаружения как аномалий, то есть областей изображения, характеристики которых отличаются от прогнозных, так и объектов интереса, о свойствах которых есть априорная информация, вплоть до библиотеки эталонов. В работе предпринята попытка системного анализа тенденций развития подходов и методов обнаружения, причин этого развития, а также метрик, предназначенных для оценки качества и достоверности обнаружения объектов. Рассмотрено обнаружение на основе математических моделей изображений. При этом особое внимание уделено подходам на основе моделей случайных полей и отношения правдоподобия. Проанализировано развитие сверточных нейронный сетей, направленных на задачи распознавания и обнаружения, включая ряд предобученных архитектур, обеспечивающих высокую эффективность при решении данной задачи. В них для обучения используются уже не математические модели, а библиотеки реальных снимков. Среди характеристик оценки качества обнаружения рассмотрены вероятности ошибок первого и второго рода, точность и полнота обнаружения, пересечение по объединению, интерполированная средняя точность. Также представлены типовые тесты, которые применяются для сравнения различных нейросетевых алгоритмов.

Ключевые слова: распознавание образов, обнаружение объектов, компьютерное зрение, обработка изображений, случайные поля, CNN, IoU, mAP, вероятность правильного обнаружения

Поступила в редакцию: 13.05.2021
Принята в печать: 07.08.2021

DOI: 10.18287/2412-6179-CO-922



© МИАН, 2024