Аннотация:
Актуальность задач обнаружения и распознавания объектов на изображениях и их последовательностях с годами только возрастает. За последние несколько десятилетий предложено огромное количество подходов и методов обнаружения как аномалий, то есть областей изображения, характеристики которых отличаются от прогнозных, так и объектов интереса, о свойствах которых есть априорная информация, вплоть до библиотеки эталонов. В работе предпринята попытка системного анализа тенденций развития подходов и методов обнаружения, причин этого развития, а также метрик, предназначенных для оценки качества и достоверности обнаружения объектов. Рассмотрено обнаружение на основе математических моделей изображений. При этом особое внимание уделено подходам на основе моделей случайных полей и отношения правдоподобия. Проанализировано развитие сверточных нейронный сетей, направленных на задачи распознавания и обнаружения, включая ряд предобученных архитектур, обеспечивающих высокую эффективность при решении данной задачи. В них для обучения используются уже не математические модели, а библиотеки реальных снимков. Среди характеристик оценки качества обнаружения рассмотрены вероятности ошибок первого и второго рода, точность и полнота обнаружения, пересечение по объединению, интерполированная средняя точность. Также представлены типовые тесты, которые применяются для сравнения различных нейросетевых алгоритмов.