Аннотация:
Данная работа посвящена решению методами глубокого обучения задачи мультиклассовой семантической сегментации изображений процесса интрацитоплазматической инъекции сперматозоида. В качестве входных данных использованы видеопоследовательности, на которых изображена вышеназванная процедура интрацитоплазматической инъекции сперматозоида. Для обучения нейросети выполнена ручная разметка 656 кадров, в результате которой каждый пиксель изображения был отнесен к одному из 4 классов: микроинъектор, микропипетка, яйцеклетка, фон. Проведен анализ современных методов решения, и экспериментальным путем выбраны наилучшие архитектура, кодировщики и гиперпараметры нейронной сети: сверточная нейронная сеть FPN (feature pyramid network) с кодировщиком resnext101, имеющим глубину 101 слой с 32 параллельными разделяемыми свертками. Построенная нейросетевая модель позволила получить эффективность сегментации $IOU=0,96$ при скорости работы алгоритма 15 кадров в секунду.
Ключевые слова:интрацитоплазматическая инъекция сперматозоида, семантическая сегментация, сверточные нейронные сети
Поступила в редакцию: 14.10.2021 Принята в печать: 25.11.2021