Аннотация:
Представлен многошаговый алгоритм обнаружения облачных объектов на многоспектральных снимках земной поверхности. На каждом шаге выполняется кластеризация пространственных пикселей многоспектрального снимка методом к-средних и к фрагментам полученных кластеров применяются спектральные критерии облачности/чистого неба. Эта процедура повторяется до тех пор, пока находятся «облачные» пиксели. «Облачные» пиксели, найденные на одном шаге, объединяются в один облачный объект.
Представлены результаты тестирования этого алгоритма на снимках прибора HYPERION (199 ненулевых спектральных каналов в спектральном диапазоне 426 нм – 2400 нм) с высоким пространственным разрешением (30 м). Выбраны снимки с частичной облачностью над поверхностями пяти типов: океан, зеленая растительность, пустынная местность, городская застройка и снег.
Выполнено сравнение результатов обработки этих снимков представленным алгоритмом и альтернативным алгоритмом, в котором те же спектральные критерии применяются независимо к каждому пространственному пикселю. Представлены средние для каждого облачного объекта спектры. Показано, что представленный алгоритм на каждом снимке находит от 1 до 3 облачных объектов, отвечающих распределению яркостей на соответствующих RGB-изображениях. Применение альтернативного алгоритма (без предварительной кластеризации) приводит к ошибкам обнаружения на краях облаков.
Предложено три параметра для оценки качества получаемых облачных масок. Из них выбран наиболее информативный: отношение разброса спектров в «облачных» пикселях к разбросу спектров в «чистых» пикселях (отношение должно быть много меньше 1).
Ключевые слова:обнаружение облаков, многоспектральные снимки, спектральные критерии, показатели качества
Поступила в редакцию: 01.12.2021 Принята в печать: 16.02.2022