Аннотация:
Определение действий объекта – сложная и актуальная задача компьютерного зрения. Такую задачу можно решать с помощью информации о положении ключевых точек объекта. Обучение моделей, определяющих положение ключевых точек, требует большой объём данных, включающих в себя информацию о положении этих ключевых точек. В связи с недостатком данных для обучения представлен метод для получения дополнительных данных, а также алгоритм, позволяющий получать высокую точность распознавания действий животных на основании малого числа данных. Достигнутая точность определения положений ключевых точек на тестовой выборке составила 92,3%. По положению ключевых точек определяется действие объекта. Сравниваются различные подходы к классификации действий по ключевым точкам. Точность определения действий объекта на изображении достигает 73,5%.
Ключевые слова:компьютерное зрение, обнаружение животных, классификация действий, нейронная сеть, машинное обучение, опорные модели, классификация скелета, аугментация данных, Keypoint R-CNN, Mobile Net
Поступила в редакцию: 01.04.2022 Принята в печать: 03.10.2022