Аннотация:
The presence of haze on images degrades the quality of perception and automatic analysis of scenes. One of the most popular methods of haze removal is the dark channel prior method, which is based on the Koschmieder atmospheric scattering model. However, its underlying assumptions are not met for nighttime, since localized light sources make a significant, if not the main, contribution to lighting. We propose here to use the degree of belonging of an image element to a localized light source, determined based on a one-class classifier, as a value that characterizes the confidence of the corresponding element of the estimated transmission map during its rectification based on the gamma-normal model, which makes it possible to increase the accuracy of dehazing when processing images, captured in low-light or nighttime conditions.