RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерная оптика // Архив

Компьютерная оптика, 2016, том 40, выпуск 5, страницы 740–745 (Mi co295)

Эта публикация цитируется в 10 статьях

IMAGE PROCESSING, PATTERN RECOGNITION

Face recognition based on the proximity measure clustering

V. B. Nemirovskiy, A. K. Stoyanov, D. S. Goremykina

Institute of Cybernetics of Tomsk Polytechnic University, Tomsk, Russia

Аннотация: In this paper problems of featureless face recognition are considered. The recognition is based on clustering the proximity measures between the distributions of brightness clusters cardinality for segmented images. As a proximity measure three types of distances are used in this work: the Euclidean, cosine and Kullback-Leibler distances. Image segmentation and proximity measure clustering are carried out by means of a software model of the recurrent neural network. Results of the experimental studies of the proposed approach are presented.

Ключевые слова: featureless comparison, clustering, one-dimensional mapping, neuron, Kullback-Leibler distance, image.

Поступила в редакцию: 14.05.2016
Принята в печать: 18.06.2016

Язык публикации: английский

DOI: 10.18287/2412-6179-2016-40-5-740-745



© МИАН, 2024