Аннотация:
Данная работа посвящена задаче распознавания людей по лицу в видеопоследовательности. В работе предложена нейросетевая модель, которая для входного набора изображений лица человека строит компактное признаковое представление фиксированной размерности. Предложенная модель состоит из двух частей: модуль распознавания по изображению лица и модуль оценки качества изображения лица. Признаковые представления кадров из входного набора, полученные в результате работы модуля распознавания, агрегируются с учетом их полезности, которая оценивается модулем оценки качества. Визуальный анализ выявил, что предложенная нейронная сеть учится использовать больше полезной информации с изображений высокого качества и меньше – с размытых или перекрытых изображений. Экспериментальная оценка на базах YouTube Faces и IJB-A показала, что предложенный метод объединения признаков на основе оценок полезности изображений позволяет повысить качество распознавания по сравнению с базовыми методами агрегации.
Ключевые слова:распознавание лиц, анализ видео, нейронные сети, глубокое обучение, алгоритмы компьютерного зрения.
Поступила в редакцию: 23.05.2017 Принята в печать: 28.09.2017