RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерная оптика // Архив

Компьютерная оптика, 2018, том 42, выпуск 1, страницы 149–158 (Mi co489)

Эта публикация цитируется в 5 статьях

ЧИСЛЕННЫЕ МЕТОДЫ И АНАЛИЗ ДАННЫХ

Тригонометрическая система функций в проекционных оценках плотности вероятности нейросетевых признаков изображений

А. В. Савченко

Национальный исследовательский университет «Высшая школа экономики», Нижний Новгород, Россия

Аннотация: Исследована задача распознавания изображений, которые описываются векторами признаков высокой размерности, выделенными с помощью глубокой свёрточной нейронной сети и анализа главных компонент. Рассмотрена проблема высокой вычислительной сложностистатистического подхода с непараметрическими оценками плотности вероятности векторов признаков, реализованного в вероятностной нейронной сети. Предложен новый метод статистической классификации на основе проекционных оценок плотности распределения с тригонометрической системой ортогональных функций. Показано, что такой подход позволяет преодолеть недостатки вероятностной нейронной сети, связанные с необходимостью обработки всех признаков всех эталонных изображений. В рамках экспериментального исследования для наборов изображений Caltech-101 и CASIA WebFaces показано, что предлагаемый подход позволяет на 1-5% снизить вероятность ошибки распознавания и в 1,5-6 раз повысить вычислительную эффективность по сравнению с исходной вероятностной нейронной сетью для малых выборок эталонных изображений.

Ключевые слова: статистическое распознавание образов, обработка изображений, глубокие свёрточные нейронные сети, вероятностная нейронная сеть, проекционные оценки, распознавание лиц.

Поступила в редакцию: 01.12.2017
Принята в печать: 19.01.2018

DOI: 10.18287/2412-6179-2018-42-1-149-158



© МИАН, 2024