Аннотация:
В статье предложены два новых метода адаптивной медианной фильтрации импульсного шума в изображениях. Первый метод основан на совместном применении итеративной обработки и преобразования результата медианной фильтрации на основе распределения Лоренца. Второй метод использует альтернативные маски медианного фильтра, рассчитанные с использованием метрики Евклида. Такой подход позволил уменьшить размер обрабатываемой области без потери качества обработки для шумов с низкой интенсивностью. В экспериментальной части статьи приведены результаты сравнения качества работы предложенных методов с известными. Для моделирования были использованы 3 различных изображения, искаженные импульсным шумом с вероятностями искажения пикселей от 1 % до 99 % включительно. Численная оценка качества очистки изображений от шума на основе пикового отношения сигнала к шуму (PSNR) и индекса структурного сходства (SSIM) показала, что предложенные методы показывают лучший результат обработки во всех рассмотренных случаях по сравнению с известными подходами. Полученные в статье результаты могут найти широкое практическое применение в обработке спутниковых и медицинских изображений, геофизических данных и других приложениях цифровой обработки изображений.
Ключевые слова:обработка изображений, шум в системах визуализации, импульсный шум, фильтры, медианный фильтр, адаптивный фильтр.
Поступила в редакцию: 22.12.2017 Принята в печать: 17.07.2018