RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерная оптика // Архив

Компьютерная оптика, 2018, том 42, выпуск 5, страницы 822–828 (Mi co566)

Эта публикация цитируется в 6 статьях

ОБРАБОТКА ИЗОБРАЖЕНИЙ, РАСПОЗНАВАНИЕ ОБРАЗОВ

Сравнение алгоритмов описания комплекснозначных полей градиентов цифровых изображений с использованием линейных методов снижения размерности

Е. А. Дмитриевa, В. В. Мясниковab

a Самарский национальный исследовательский университет имени академика С.П. Королева, 443086, Россия, г. Самара, Московское шоссе, д. 34
b ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН, 443001, Россия, г. Самара, ул. Молодогвардейская, д. 151

Аннотация: В работе представлен анализ различных подходов к построению описаний полей градиентов цифровых изображений. Анализируемые подходы основаны на известных методах снижения размерности данных, таких как методы главных и независимых компонент, метод дискриминантного анализа. Мы применяем указанные методы не к исходному изображению, представленному в виде двумерного поля яркости (полутоновому изображению), а к его вторичному представлению в виде двумерного поля градиента – комплекснозначному изображению. При этом рассматриваются случаи использования как поля градиента целиком, так и только его фазовой части. Дополнительно рассматриваются два независимых способа формирования окончательного описания искомого объекта: в виде коэффициентов разложения поля градиента по сформированному базису и с использованием оригинальной авторской конструкции модельно-ориентированных дескрипторов. Последние позволяют в два раза снизить число вещественных коэффициентов, используемых при описании искомого объекта. В качестве конкретной прикладной задачи, на которой проводятся исследования, выступает проблема распознавания лиц. Эффективность анализируемых подходов демонстрируется путём сравнения результатов их применения к изображениям из базы данных “Extended Yale Face Database B”. Алгоритмом классификации выступает метод ближайшего соседа.

Ключевые слова: распознавание лиц, метод главных компонент, метод независимых компонент, линейный дискриминантный анализ, модельно-ориентированные дескрипторы, The Extended Yale Database B, описание изображения.

Поступила в редакцию: 21.06.2018
Принята в печать: 31.07.2018

DOI: 10.18287/2412-6179-2018-42-5-822-828



© МИАН, 2024