RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерная оптика // Архив

Компьютерная оптика, 2018, том 42, выпуск 5, страницы 838–845 (Mi co568)

Эта публикация цитируется в 1 статье

ОБРАБОТКА ИЗОБРАЖЕНИЙ, РАСПОЗНАВАНИЕ ОБРАЗОВ

Tree-serial parametric dynamic programming with flexible prior model for image denoising

Ph. C. Thangab, A. V. Kopylovc

a National Research University Higher School of Economics, 20Myasnitskaya Street, Moscow, Russia
b The University of Da Nang – University of Science and Technology, 54 Nguyen Luong Bang Street, Da Nang, Viet Nam
c Tula State University, pr. Lenina 92, Tula, Russia

Аннотация: We consider here image denoising procedures, based on computationally effective tree-serial parametric dynamic programming procedures, different representations of an image lattice by the set of acyclic graphs and non-convex regularization of a new type which allows to flexibly set a priori preferences. Experimental results in image denoising, as well as comparison with related methods, are provided. A new extended version of multi quadratic dynamic programming procedures for image denoising, proposed here, shows an improved accuracy for images of a different type.

Ключевые слова: Image denoising, Dynamic programming, Bayesian optimization, Markov random fields (MRFs), Gauss-Seidel iteration method.

Поступила в редакцию: 27.11.2017
Принята в печать: 27.07.2018

Язык публикации: английский

DOI: 10.18287/2412-6179-2018-42-5-838-845



© МИАН, 2024