Аннотация:
В статье предлагается информационная технология обработки данных дистанционного зондирования Земли для оценки ареалов растений, основанная на вычислении локальных признаков, полученных по суперпиксельному представлению изображений, и кластеризации K-Means. Технология представляет собой автоматизированный способ оценки состава растительного ареала по заданной пользователем обучающей выборке. Достоинствами предлагаемой технологии являются использование меньшего объема данных для обучения, чем для поэлементной классификации, и более высокое качество классификации по сравнению с поэлементной классификацией.
Ключевые слова:суперпиксельная сегментация, кластеризация, ареалы растительности, процентный состав.
Поступила в редакцию: 09.06.2018 Принята в печать: 21.09.2018