Аннотация:
Исследуется проблема комплексного анализа и мониторинга окружающей среды на основе прежде всего данных гиперспектральных изображений и вариант ее решения с созданием необходимого алгоритмического обеспечения для обработки и хранения гиперспектральных изображений. Гиперспектральное изображение рассматривается как двумерное поле сигнатур пикселей. Предложены методы оценки сходства сигнатуры пикселя гиперспектрального изображения с эталоном, включающие в себя простые преобразования совмещения пикселя с эталоном: тождественное; масштабирование по амплитуде; смещение по y; сочетание последних двух. Предложен метод кластеризации/распознавания с самообучением, определяющий значения параметров преобразования, обеспечивающего совмещение сигнатуры текущего пикселя с эталоном. Сходство с эталоном устанавливается по величине среднеквадратического отклонения. На этой основе предложен метод сжатия гиперспектральных изображений с контролируемыми потерями путем формирования базиса накоплением эталонов сигнатур и представления остальных сигнатур параметрами совмещения их с распознанным эталоном класса. В эксперименте с данными гиперспектральных изображений f100520t01p00r12 спектрометра AVIRIS, при величине потерь в 2 %, метод обеспечил коэффициенты сжатия исходного гиперспектрального изображения для разных типов преобразований совмещения от 43 до 165 без необходимости архивации, т.е. сохраняя доступ к гиперспектральному изображению и используя список эталонов как аналог палитры гиперспектральных изображений. Предложен алгоритм для формирования плотных групп детектируемых объектов (например, пятен нефти) и их невыпуклого оконтуривания, управляемый 4 параметрами.
Построена и реализована в пилотном варианте концепция геоинформационной системы и ее СУБД, обеспечивающая мониторинг и основанная на приоритете обработки и хранения гиперспектральных изображений, как источнике данных для него. В структуру системы введен лабораторный комплекс с новыми алгоритмами обработки и хранения гиперспектральных изображений, способный формировать на основе данных гиперспектральных изображений объекты цифровой векторной карты и данные о состоянии сформированных объектов.
Ключевые слова:гиперспектральные изображения, обработка изображений, распознавание с самообучением, сжатие с потерями, сжатие без архивации, невыпуклое оконтуривание, цифровые карты, СУБД, мониторинг окружающей среды.
Поступила в редакцию: 06.12.2018 Принята в печать: 05.03.2019