RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерная оптика // Архив

Компьютерная оптика, 2019, том 43, выпуск 2, страницы 304–315 (Mi co649)

Эта публикация цитируется в 25 статьях

ЧИСЛЕННЫЕ МЕТОДЫ И АНАЛИЗ ДАННЫХ

Технология интеллектуального отбора признаков для системы автоматического формирования плана коагулятов на сетчатке глаза

Н. Ю. Ильясоваab, А. С. Широканевab, А. В. Куприяновba, Р. А. Парингерab

a ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН, 443001, Россия, г. Самара, ул. Молодогвардейская, д. 151
b Самарский национальный исследовательский университет имени академика С.П. Королёва, 443086, Россия, г. Самара, Московское шоссе, д. 34

Аннотация: В работе предложена технология отбора эффективных признаков для локализации индивидуальных особенностей анатомических и патологических структур на глазном дне человека. Она позволила провести интеллектуальный анализ признаков с использованием цветовых подпространств для решения задачи выделения областей интереса. Данная задача является актуальной для повышения эффективности проведения операции лазерной коагуляции. В основу технологии положен текстурный анализ определённых паттернов изображений. Исходные текстурные признаки производятся из разных статистических дескрипторов изображений, вычисленных с использованием библиотеки MaZda (гистограмма изображения, градиент изображения, матрицы длины серий и смежности). Анализ информативности пространства признаков и выбор наиболее эффективных осуществляется с использованием дискриминантного анализа данных. Определены наилучшие значения размеров окна фрагментации изображений для проведения кластеризации глазного дна и наборы признаков, обеспечивающих необходимую точность идентификации областей интереса при анализе следующих 4 классов изображений: экссудаты, толстые сосуды, тонкие сосуды и здоровые участки. В технологии отбора признаков применялась кластеризация с использованием метода К-средних, а в качестве меры сходства использовалось расстояние Евклида и Махаланобиса. Необходимый минимальный размер окна фрагментации и мера сходства выбирались из критерия минимума ошибки кластеризации среди всех наименьших размеров окон. Наилучшие результаты продемонстрировало использование 6 признаков, сформированных попарным отбором с поворотом и применением расстояния Махаланобиса, и окна фрагментации размером 12.
В статье представлена также система автоматического формирования плана коагулятов, которую планируется использовать для поддержки принятия решений при проведении операции лазерной коагуляции сетчатки при лечении диабетического макулярного отёка, разрабатываемая на основе предложенной технологии.

Ключевые слова: лазерная коагуляция, глазное дно, изображения глазного дна, текстурные признаки, интеллектуальный анализ данных, отбор признаков.

Поступила в редакцию: 11.02.2019
Принята в печать: 23.03.2019

DOI: 10.18287/2412-6179-2019-43-2-304-315



© МИАН, 2025