Аннотация:
Работа посвящена исследованию эффективности методов контролируемой спектральной и спектрально-пространственной классификации гиперспектральных данных. В частности, на примере различения типов растительности рассмотрены методы минимального расстояния, опорных векторов, Махаланобиса, максимального правдоподобия. Значительное внимание уделено изучению зависимости точности классификации данных при применении перечисленных методов от количества и способа выбора спектральных признаков. Продемонстрирована перспективность совместной обработки спектральных и пространственных признаков, учитывающей коррелированность близкорасположенных пикселей. Приведены экспериментальные результаты, полученные при различных способах формирования обучающих выборок.
Ключевые слова:дистанционное зондирование Земли, гиперспектральные изображения, классификация типов поверхностей, спектральные и пространственные признаки, обработка изображений.
Поступила в редакцию: 18.03.2019 Принята в печать: 08.04.2019