Аннотация:
При освещении плоской волной диэлектрического цилиндра с круглым сечением определённого резонансного радиуса внутри цилиндра формируется мода шепчущей галереи (ШГ). Этот резонансный радиус диэлектрического цилиндра можно численно найти из условия максимума модуля соответствующего коэффициента разложения в ряд по функциям Бесселя амплитуды напряжённости электрического поля световой волны с ТЕ-поляризацией. Получены уравнения из цилиндрических функций, позволяющие приближённо рассчитывать резонансный радиус цилиндра. Например, для радиуса цилиндра, в котором формируется мода ШГ с номером 26, эти уравнения дают правильно первые 8 значащих цифр радиуса. Для цилиндра с показателем преломления 1,59 и резонансным радиусом 3,469239 от длины волны в цилиндре возбуждается мода ШГ с номером 30, которая формирует фокусное пятно шириной 0,15 от длины волны с максимальной интенсивностью снаружи цилиндра в 1500 раз большей, чем интенсивность падающего света.