Аннотация:
В работе рассматриваются вопросы реконструкции неявно заданных функций или цифровых изображений. Функции задаются с использованием наблюдений, каждое из которых представляет собой результат парного сравнения значений функции для двух случайных аргументов. Представлен анализ современного состояния исследований для частных постановок указанной проблемы: метод парных сравнений, используемый при принятии решений в случае конечного множества альтернатив; реконструкции предпочтений пользователей в многокритериальных задачах анализа; знаковых представлений изображений, используемых в качестве аппарата описания и анализа цифровых изображений. Предлагается унифицированный подход к реконструкции функций и изображений по их знаковым представлениям, основанный на переходе в пространство высокой размерности и построения линейного (для случая реконструкции функции и изображений) или нелинейного (в т.ч. непараметрического) классификатора (для реконструкции предпочтений). Для ряда алгоритмов классификации проведены экспериментальные исследования по оценке эффективности предложенного подхода на примере задачи реконструкции функции полезности в теории принятия решений и реконструкции функции яркости реальных изображений.
Ключевые слова:парные сравнения, знаковое представление, функция полезности, функция предпочтения, выявление предпочтений, принятие решений, машинное обучение, цифровое изображение.
Поступила в редакцию: 15.10.2019 Принята в печать: 15.10.2019