Аннотация:
Комплексирование данных дистанционного зондирования Земли предназначено для получения изображений более высокого качества, чем исходные изображения. Однако вопрос о влиянии комплексирования данных на дальнейшую тематическую обработку часто остаётся за рамками исследований, и методы комплексирования используются в большинстве своём для улучшения визуального представления данных. В настоящей статье рассматривается вопрос о влиянии комплексирования с повышением пространственного и спектрального разрешения данных на тематическую классификацию изображений с использованием различных классификаторов и методов извлечения признаков, популярных в задачах обработки данных дистанционного зондирования Земли. В качестве алгоритма комплексирования в работе используется авторский алгоритм, позволяющий выполнять комплексирование данных по множеству кадров из различных источников оптических систем дистанционного зондирования Земли, обладающих различным пространственным и спектральным разрешением. В качестве алгоритмов классификации рассматриваются метод опорных векторов и Random Forest, в качестве признаков – спектральные каналы, а также расширенные атрибутивные профили и локальные признаки атрибутивных профилей. Экспериментальное исследование было произведено с использованием модельных изображений четырёх изображающих систем. Результирующее изображение имело пространственное разрешение в 2, 3, 4 и 5 раз выше, чем для исходных изображений соответственно. В результате исследований было выявлено, что для метода опорных векторов не имеет смысла выполнять комплексирование, так как излишняя пространственная детализация на классификацию данным алгоритмом влияет отрицательно. Для алгоритма Random Forest, напротив, результаты классификации в 90% случаев имели большую точность, чем для исходных изображений низкого разрешения. Например, для изображений с наименьшим отличием в пространственном разрешении (в 2 раза) от результата комплексирования точность классификации комплексированного изображения была в среднем на 4% выше. Кроме того, результаты, полученные для алгоритма Random Forest с комплексированием, оказались лучше результатов для метода опорных векторов без комплексирования. Дополнительно было показано, что точность классификации комплексированного изображения методом Random Forest может быть повышена в среднем на 9% за счёт использования расширенных атрибутивных профилей в качестве признаков. Таким образом, при использовании комплексирования данных лучше применять классификатор Random Forest, а использование комплексирования с методом опорных векторов нецелесообразно.
Ключевые слова:классификация изображений, комплексирование данных, повышение разрешения, SVM, RF.
Поступила в редакцию: 15.04.2020 Принята в печать: 08.05.2020