Разработка и исследование алгоритмов определения предпочитаемых пользователем остановок общественного транспорта в геоинформационной системе на основе методов машинного обучения
Аннотация:
В работе рассматривается задача определения предпочитаемых пользователем остановок в рекомендательной транспортной системе. Проведено сравнение эффективности использования различных методов машинного обучения для решения указанной задачи в системе персонализированных рекомендаций: метода опорных векторов, дерева решений, случайного леса, AdaBoost, алгоритма k-ближайших соседей, многослойного персептрона. Сравнение указанных традиционных методов машинного обучения производилось также с предложенным методом, разработанным на основе алгоритма вычисления оценок. Экспериментальные исследования использовали реальные данные мобильного приложения «Прибывалка-63», являющегося частью сервиса tosamara.ru. Подтверждена как работоспособность, так и эффективность предложенного метода.