RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерная оптика // Архив

Компьютерная оптика, 2020, том 44, выпуск 4, страницы 646–652 (Mi co831)

Эта публикация цитируется в 7 статьях

ОБРАБОТКА ИЗОБРАЖЕНИЙ, РАСПОЗНАВАНИЕ ОБРАЗОВ

Разработка и исследование алгоритмов определения предпочитаемых пользователем остановок общественного транспорта в геоинформационной системе на основе методов машинного обучения

А. А. Бородинов

Самарский национальный исследовательский университет имени академика С.П. Королёва, 443086, Россия, г. Самара, Московское шоссе, д.34

Аннотация: В работе рассматривается задача определения предпочитаемых пользователем остановок в рекомендательной транспортной системе. Проведено сравнение эффективности использования различных методов машинного обучения для решения указанной задачи в системе персонализированных рекомендаций: метода опорных векторов, дерева решений, случайного леса, AdaBoost, алгоритма k-ближайших соседей, многослойного персептрона. Сравнение указанных традиционных методов машинного обучения производилось также с предложенным методом, разработанным на основе алгоритма вычисления оценок. Экспериментальные исследования использовали реальные данные мобильного приложения «Прибывалка-63», являющегося частью сервиса tosamara.ru. Подтверждена как работоспособность, так и эффективность предложенного метода.

Ключевые слова: рекомендательная система, машинное обучение, пользовательские предпочтения.

Поступила в редакцию: 02.03.2020
Принята в печать: 07.05.2020

DOI: 10.18287/2412-6179-CO-713



© МИАН, 2024