RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерная оптика // Архив

Компьютерная оптика, 2020, том 44, выпуск 4, страницы 660–664 (Mi co833)

Эта публикация цитируется в 5 статьях

ЧИСЛЕННЫЕ МЕТОДЫ И АНАЛИЗ ДАННЫХ

Security detection of network intrusion: application of cluster analysis method

W. Yang

Railway Signal and Information Engineering Department, Shandong Polytechnic, Jinan, Shandong 250104, China

Аннотация: In order to resist network malicious attacks, this paper briefly introduced the network intrusion detection model and K-means clustering analysis algorithm, improved them, and made a simulation analysis on two clustering analysis algorithms on MATLAB software. The results showed that the improved K-means algorithm could achieve central convergence faster in training, and the mean square deviation of clustering center was smaller than the traditional one in convergence. In the detection of normal and abnormal data, the improved K-means algorithm had higher accuracy and lower false alarm rate and missing report rate. In summary, the improved K-means algorithm can be applied to network intrusion detection.

Ключевые слова: clustering analysis, K-means, cross entropy, network intrusion.

Поступила в редакцию: 24.10.2019
Принята в печать: 13.12.2019

DOI: 10.18287/2412-6179-CO-657



© МИАН, 2024