Аннотация:
В статье представлен подход к проблеме контекстного поиска и описания объектов на растровых космоснимках, заключающийся в моделировании рассуждений на основе структурированных прецедентов. В результате обработки изображения строится граф смежности цветовых областей. Объект характеризуется цветом, атрибутами формы отрезков границы и формы объекта в целом. Структурированный прецедент представляется в виде лучевого графа, дуги которого упорядочены в соответствии с положительным обходом границ областей. С помощью алгоритма сопоставления графов в анализируемом изображении выявляются вхождения прецедентов из базы данных системы. При обнаружении вхождения применяется правило прецедентного вывода. Степень принадлежности объекта некоторому классу зависит не только от свойств самого объекта, но и от достоверности окружающих его объектов. Стратегия контекстного поиска содержит этапы рекурсии и итерации. В отличие от нейросетевых технологий, предложенный подход позволяет не только классифицировать изображенные объекты, но и получать их структурированные описания. Кроме того, выдаваемое системой классификационное решение имеет аргументированное обоснование. Результаты эксперимента показывают, что рассуждения на основе структурированных прецедентов позволяют уточнять результаты классификации и повышать достоверность распознавания объектов на космоснимках.
Ключевые слова:компьютерное зрение, цифровая обработка изображений, распознавание образов, структурный анализ, сегментация, аппроксимация, граф смежности, лучевой граф, рассуждения по прецедентам.
Поступила в редакцию: 11.03.2020 Принята в печать: 07.05.2020