Аннотация:
Работа посвящена разработке подхода, позволяющему по малому числу наблюдений создавать правила различения заданных объектов гиперспектральных данных. Разработка подобного подхода способствовала бы развитию методов и алгоритмов для оперативного анализа гиперспектральных данных, применимых как для предварительной обработки, так и для выполнения разметки гиперспектральных данных. Для реализации подхода предлагается применять технологию, заключающуюся в совместном использовании общих правил вычисления индексов и критериев информативности. В рамках данной работы при реализации предлагаемой технологии индекс задается нормализованной разностной формулой, а информативность оценивается на основе значения критерия разделимости дискриминантного анализа. В результате проведённых исследований, было показано, что с использованием алгоритма, реализующего технологию, была решена задача различения областей гиперспектральных данных с разной растительностью. Сформированный алгоритмом индекс оказался близким по значениям к NDVI. Применяемая технология является генерализацией под-хода к формированию правил анализа гиперспектральных данных по малому числу признаков и может быть использована для формирования индексов, информативных в различных задачах.
Ключевые слова:классификация, гиперспектральные данные, NDVI, дискриминантный анализ
Поступила в редакцию: 27.05.2021 Принята в печать: 08.09.2021