RUS  ENG
Полная версия
ЖУРНАЛЫ // Contemporary Mathematics // Архив

Contemp. Math., 2012, том 578, страницы 165–193 (Mi conm4)

Эта публикация цитируется в 17 статьях

Heine, Hilbert, Padé, Riemann, and Stieltjes: a John Nuttall's work 25 years later

A. Martínez-Finkelshteinab, E. A. Rakhmanovc, S. P. Suetind

a Univ Granada, Inst Carlos I Fis Teor & Computac, Granada, Spain
b Univ Almeria, Dept Stat & Appl Math, Almeria, Spain
c Univ S Florida, Dept Math, Tampa, FL USA
d Russian Acad Sci, VA Steklov Math Inst, Moscow, Russia

Аннотация: In 1986 J. Nuttall published a paper in Constructive Approximation, where with his usual insight he studied the behavior of the denominators ("generalized Jacobi polynomials") and the remainders of the Pade approximants to a special class of algebraic functions with 3 branch points. 25 years later we try to look at this problem from a modern perspective. On one hand, the generalized Jacobi polynomials constitute an instance of the so-called Heine-Stieltjes polynomials, i.e. they are solutions of linear ODE with polynomial coefficients. On the other, they satisfy complex orthogonality relations, and thus are suitable for the Riemann-Hilbert asymptotic analysis. Along with the names mentioned in the title, this paper features also a special appearance by Riemann surfaces, quadratic differentials, compact sets of minimal capacity, special functions and other characters.

Язык публикации: английский

DOI: 10.1090/conm/578/11474



Реферативные базы данных:


© МИАН, 2024