RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерные исследования и моделирование // Архив

Компьютерные исследования и моделирование, 2022, том 14, выпуск 6, страницы 1325–1342 (Mi crm1035)

Эта публикация цитируется в 3 статьях

АНАЛИЗ И МОДЕЛИРОВАНИЕ СЛОЖНЫХ ЖИВЫХ СИСТЕМ

Мультистабильность для системы трех конкурирующих видов

Б. Х. Нгуенa, Д. Хаab, В. Г. Цибулинa

a Южный федеральный университет, Россия, 344090, г. Ростов-на-Дону, ул. Мильчакова, 8а
b Вьетнамско-Венгерский индустриальный университет, Вьетнам, г. Ханой, р. Шонтэй, ул. Хыу Нгхи, 16

Аннотация: Проводится исследование вольтерровской модели, описывающей конкуренцию трех видов. Соответствующая система дифференциальных уравнений первого порядка с квадратичной правой частью после замены переменных сводится к системе с восемью параметрами. Два из них характеризуют скорости роста популяций, для первого вида этот параметр принят равным единице. Остальные шесть коэффициентов задают матрицу взаимодействий видов. Ранее при аналитическом исследовании так называемых симметричной модели [May, Leonard, 1975] и асимметричной модели [Chi, Wu, Hsu, 1998] с коэффициентами роста, равными единице, были установлены соотношения на коэффициенты взаимодействия, при которых система имеет однопараметрическое семейство предельных циклов. В данной работе проведено численно-аналитическое исследование полной системы на основе косимметричного подхода, позволившего определить соотношения на параметры, которым отвечают семейства равновесий. Получены различные варианты однопараметрических семейств и показано, что они могут состоять как из устойчивых, так и из неустойчивых равновесий. В случае матрицы взаимодействий с единичными коэффициентами найдены мультикосимметрия системы и двухпараметрическое семейство равновесий, существующее при любых коэффициентах роста. Для различных коэффициентов взаимодействия найдены значения параметров роста, при которых реализуются периодические режимы. Их принадлежность семейству предельных циклов подтверждена расчетом мультипликаторов. В широком диапазоне значений, нарушающих соотношения, при которых обеспечивается существование циклов, получается типичное при разрушении косимметрии медленное колебательное установление. Приведены примеры, когда фиксированному значению одного параметра роста отвечают два значения другого параметра, так что существуют разные семейства периодических режимов. Таким образом, установлена вариативность сценариев развития трехвидовой системы.

Ключевые слова: мультистабильность, динамика, косимметрия, популяции, уравнения Лотки – Вольтерры, семейство равновесий, предельный цикл, обыкновенные дифференциальные уравнения.

УДК: 519.8

Поступила в редакцию: 05.09.2022
Исправленный вариант: 30.09.2022
Принята в печать: 05.10.2022

DOI: 10.20537/2076-7633-2022-14-6-1325-1342



© МИАН, 2024