RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерные исследования и моделирование // Архив

Компьютерные исследования и моделирование, 2024, том 16, выпуск 2, страницы 339–351 (Mi crm1165)

МАТЕМАТИЧЕСКИЕ ОСНОВЫ И ЧИСЛЕННЫЕ МЕТОДЫ МОДЕЛИРОВАНИЯ

Об определении модельной скорости звука для решения задачи о плоском сдвиговом течении жидкости методом гидродинамики сглаженных частиц

О. В. Решетникова

Вычислительный центр Дальневосточного отделения Российской академии наук, Россия, 680000, г. Хабаровск, ул. Ким-Ю-Чена, д. 65

Аннотация: Дискретизация задач по методу гидродинамики сглаженных частиц (SPH) предполагает присутствие в решении нескольких констант — параметров дискретизации. Среди них особо следует отметить модельную скорость звука $c_0$, которая связывает мгновенную плотность в SPH-частице с возникающим давлением через замыкающее уравнение состояния.
В работе изложен подход к точному определению необходимого значения модельной скорости звука, имеющий в своей основе анализ изменения плотностей в SPH-частицах при их относительном смещении. Примером движения сплошной среды принята задача о плоском сдвиговом течении; объектом анализа является функция относительного уплотнения $\epsilon_{\rho}$ в SPH-частице, определяемая формой ядра сглаживания. Идеальный плоскопараллельный относительный сдвиг частиц в области сглаживания определяет периодическое изменение их плотностей. Исследование функций $\epsilon_{\rho}$, получаемых от использования различных ядер сглаживания в аппроксимации плотности с учетом такого сдвига, позволило установить пульсационный характер возникновения давлений в частицах. Кроме того, определен случай расположения соседей в области сглаживания, обеспечивающий максимум уплотнения в частице.
Сопоставление функций $\epsilon_{\rho}$ с SPH-аппроксимацией уравнения движения позволило связать параметр дискретизации $c_0$ с формой ядра сглаживания и прочими параметрами дискретного аналога задачи, в том числе коэффициентом искусственной диссипации. В результате сформулировано уравнение, обеспечивающее нахождение необходимого и достаточного для решения значения модельной скорости звука. Для трех представителей ядер сглаживания приведены выражения корня $c_0$ такого уравнения, упрощенные из полиномов до числовых коэффициентов при параметрах рассматриваемой задачи.

Ключевые слова: плоское сдвиговое течение, метод сглаженных частиц (SPH), ядро, дискретная аппроксимация физического свойства, изменение дискретной аппроксимации во времени, замыкающее уравнение состояния, искусственная диссипация, скорость звука

УДК: 532.545

Поступила в редакцию: 22.11.2022
Исправленный вариант: 21.12.2023
Принята в печать: 21.12.2023

DOI: 10.20537/2076-7633-2024-16-2-339-351



© МИАН, 2024