Аннотация:
Сокращением поперечно-полосатых мышц управляют регуляторные белки — тропонин и тропомиозин, ассоциированные с тонкими актиновыми нитями в саркомерах. В зависимости от концентрации Ca2+ тонкая нить перестраивается, и тропомиозин смещается по ее поверхности, открывая или закрывая доступ к актину для моторных доменов миозиновых молекул и вызывая сокращение или расслабление соответственно. Известны многочисленные точечные аминокислотные замены в тропомиозине, приводящие к генетическим патологиям — мио- и кардиомиопатиям, что обусловлено изменениями структурных и функциональных свойств тонкой нити. Представлены результаты молекулярно-динамического моделирования фрагмента тонкой нити саркомеров сердечной мышцы, образованной фибриллярным актином и тропомиозином дикого типа или тропомиозином с аминокислотными заменами: двойной стабилизирующей D137L/G126R либо кардиомиопатической S215L. Для расчетов использовали новую модель фрагмента тонкой нити, содержащую 26 мономеров актина и 4 димера тропомиозина, с уточненной структурой области перекрытия соседних молекул тропомиозина в каждом из двух тропомиозиновых тяжей. Результаты моделирования показали, что добавление тропомиозина к нити актина существенно увеличивает ее изгибную жесткость, как было ранее найдено экспериментально. Двойная стабилизирующая замена D137L/G126R приводит к дальнейшему увеличению изгибной жесткости нити, а замена S215L, наоборот, — к ее снижению, что также соответствует экспериментальным данным. В то же время эти замены по-разному влияют на угловую подвижность актиновой спирали и лишь не значительно модулируют угловую подвижность тропомиозиновых тяжей по отношению к спирали актина и населенность в однородных связей между отрицательно заряженными остатками тропомиозина и положительно заряженными остатками актина. Результаты верификации модели показали, что ее качество достаточно для того, чтобы проводить численное исследование влияния одиночных аминокислотных замен на структуру и динамику тонких нитей и изучать эффекты, приводящие к нарушениям регуляции мышечного сокращения. Эта модель может быть использована как полезный инструмент выяснения молекулярных механизмов некоторых известных генетических заболеваний и оценки патогенности недавно обнаруженных генетических вариантов.