Аннотация:
Предлагается новая постановка задачи интегральной геометрии, в которой образ функции в каждой точке получается путем ее интегрирования по мере, зависящей от точки. Такую систему мер назовем мероиндукцией. Показано, что для класса мероиндукций, имеющих единичный атом в соответственной точке каждой меры и ограниченных на всем пространстве, существует устойчивая асимптотическая формула обращения. Это обобщает полученные ранее результаты для усреднений по системам измеримых разбиений и для весовых усреднений на графах.
Ключевые слова:интегральная геометрия, мера, пространство функций, линейные операторы, формулы обращения.