RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерные исследования и моделирование // Архив

Компьютерные исследования и моделирование, 2017, том 9, выпуск 2, страницы 167–186 (Mi crm56)

МАТЕМАТИЧЕСКИЕ ОСНОВЫ И ЧИСЛЕННЫЕ МЕТОДЫ МОДЕЛИРОВАНИЯ

Клеточно-автоматные методы решения классических задач математической физики на гексагональной сетке. Часть 1

И. В. Матюшкинab

a АО «Научно-исследовательский институт молекулярной электроники», Россия, 124460, г. Москва, г. Зеленоград, 1-ый Западный проезд, д. 12/1
b Институт проблем проектирования в микроэлектронике РАН, Россия, 124681, г. Москва, г. Зеленоград, ул. Советская, д. 3

Аннотация: Статья носит методический характер и посвящена решению трех классических уравнений математической физики (Лапласа, диффузии и волнового) простейшими численными схемами в формулировке клеточных автоматов (КА). Особое внимание уделяется законам сохранения вещества и неприятному эффекту избыточной гексагональной симметрии (ИГС).
Делается вывод о том, что по сравнению с классическими конечно-разностными методами, хотя локальная функция перехода (ЛФП) КА терминологически эквивалентна шаблону вычислительной двух-слоевой явной схемы, различие состоит в замене матричных (direct) методов (например, метода прогонки для трехдиагональной матрицы) итерационными. Из этого следуют более жесткие требования к дискретизации условий для граничных КА-ячеек.
Для гексагональной сетки и консервативных граничных условий записана корректная ЛФП для граничных ячеек, справедливая, по крайней мере, для границ прямоугольной и круговой формы. Предложена идея разделения ЛФП на internal, boundary и postfix. На примере этой задачи заново осмыслено значение числа Куранта-Леви как соотношения скорости сходимости КА к решению задачи, данному на фиксированный момент времени, и скорости изменения самого решения в динамике.

Ключевые слова: клеточные автоматы с непрерывными значениями, гексагональная сетка, конечно-разностные методы, уравнения в частных производных.

УДК: 519.63:621.382

Поступила в редакцию: 30.08.2016
Исправленный вариант: 06.03.2017
Принята в печать: 17.03.2017

DOI: 10.20537/2076-7633-2017-9-2-167-186



© МИАН, 2024