Аннотация:
В работе рассмотрена математическая модель, основанная на линейном интегро-дифференциальном уравнении Больцмана, описывающая перенос излучения в рассеивающей среде, подвергающейся импульсному облучению точечным источником. Сформулирована обратная задача для уравнения переноса, заключающаяся в определении коэффициента рассеяния по временно-угловому распределению плотности потока излучения в заданной точке пространства. При исследовании обратной задачи анализируется представление решения уравнения в виде ряда Неймана. Нулевой член ряда описывает нерассеянное излучение, первый член ряда — однократно рассеянное поле, остальные члены — многократно рассеянное поле. Для областей с небольшой оптической толщиной и невысоким уровнем рассеяния при нахождении приближенного решения уравнения переноса излучения широкое распространение получило приближение однократного рассеяния. При использовании этого подхода к задаче с дополнительными ограничениями на исходные данные получена аналитическая формула для нахождения коэффициента рассеяния. Для проверки адекватности полученной формулы построен и программно реализован весовой метод Монте-Карло решения уравнения переноса, учитывающий многократное рассеяние в среде и пространственно-временную сингулярность источника излучения. Применительно к проблемам высокочастотного акустического зондирования в океане проведены вычислительные эксперименты. Показано, что применение приближения однократного рассеяния оправдано по крайней мере на дальности зондирования порядка ста метров, причем основное влияние на погрешность формулы вносят двукратно и трехкратно рассеянные поля. Для областей большего размера приближение однократного рассеяния в лучшем случае дает лишь качественное представление о структуре среды, иногда не позволяя определить даже порядок количественных характеристик параметров взаимодействия излучения с веществом.