RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерные исследования и моделирование // Архив

Компьютерные исследования и моделирование, 2021, том 13, выпуск 4, страницы 761–778 (Mi crm915)

Эта публикация цитируется в 1 статье

МОДЕЛИ В ФИЗИКЕ И ТЕХНОЛОГИИ

Применение алгоритма Random Forest для построения локального оператора, уточняющего результаты расчетов в задачах внешней аэродинамики

С. В. Зимина, М. Н. Петров

Московский физико-технический институт (Национальный исследовательский университет), Россия, 141701, г. Долгопрудный, Институтский пер., д. 9

Аннотация: При моделировании турбулентных течений неизбежно приходится сталкиваться с выбором между точностью и скоростью проведения расчетов. Так, DNS- и LES-модели позволяют проводить более точные расчеты, но являются более вычислительно затратными, чем RANS-модели. Поэтому сейчас RANS-модели являются наиболее часто используемыми при проведении практических расчетов. Но и расчеты с применением RANS-моделей могут быть значительно вычислительно затратными для задач со сложной геометрией или при проведении серийных расчетов по причине необходимости разрешения пристенного слоя. Существуют подходы, позволяющие значительно ускорить вычисления для RANS-моделей. Например, пристеночные функции или методы, основанные на декомпозиции расчетной области. Тем не менее они неизбежно теряют в точности за счет упрощения модели в пристенной области. Для того чтобы одновременно получить и вычислительно эффективную и более точную модель, может быть построена суррогатная модель на основании упрощенной модели и с использованием знаний о предыдущих расчетах, полученных более точной моделью, например из некоторых результатов серийных расчетов.
В статье строится оператор перехода, позволяющий по результатам расчетов менее точной модели получить поле течения как при применении более точной модели. В данной работе результаты расчетов, полученные с помощью менее точной модели Спаларта-Аллмараса с применением пристенной декомпозиции, уточняются на основании расчетов схожих течений, полученных с помощью базовой модели Спаларта-Аллмараса с подробным разрешением пристенной области, с помощью методов машинного обучения. Оператор перехода от уточняемой модели к базовой строится локальным образом. То есть для уточнения результатов расчета в каждой точке расчетной области используются значения переменных пространства признаков (сами переменные поля и их производные) в этой точке. Для построения оператора используется алгоритм Random Forest. Эффективность и точность построенной суррогатной модели демонстрируется на примере двумерной задачи сверхзвукового турбулентного обтекания угла сжатия при различных числах Рейнольдса. Полученный оператор применяется к решению задач интерполяциии экстраполяции по числу Рейнольдса, также рассматривается топологический случай — интерполяцияи экстраполяция по величине угла сжатия $\alpha$.

Ключевые слова: пристенная декомпозиция, пристенные функции, вычислительная аэродинамика, случайный лес, машинное обучение, турбулентность.

УДК: 51-7

Поступила в редакцию: 10.05.2021
Исправленный вариант: 21.06.2021
Принята в печать: 22.06.2021

DOI: 10.20537/2076-7633-2021-13-4-761-778



© МИАН, 2024