RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерные исследования и моделирование // Архив

Компьютерные исследования и моделирование, 2021, том 13, выпуск 4, страницы 779–792 (Mi crm916)

Эта публикация цитируется в 1 статье

МОДЕЛИ В ФИЗИКЕ И ТЕХНОЛОГИИ

Методика имитационного моделирования на основе обучающих данных для двухфазного течения в гетерогенной пористой среде

А. В. Умановский

Российский государственный университет нефти и газа (Национальный исследовательский институт) имени И. М. Губкина, Россия, 119991, г. Москва, Ленинский пр-т., д. 65

Аннотация: Классические численные методы, применяемые для предсказания эволюции гидродинамических систем, предъявляют высокие требования к вычислительным ресурсам и накладывают ограничения на число вариантов геолого-гидродинамических моделей, расчет эволюции состояний которых возможно осуществлять в практических условиях. Одним из перспективных подходов к разработке эвристических оценок, которые могли бы ускорить рассмотрение вариантов гидродинамических моделей, является имитационное моделирование на основе обучающих данных. В рамках этого подхода методы машинного обучения используются для настройки весов искусственной нейронной сети (ИНС), предсказывающей состояние физической системы в заданный момент времени на основе начальных условий. В данной статье описаны оригинальная архитектура ИНС и специфическая процедура обучения, формирующие эвристическую модель двухфазного течения в гетерогенной пористой среде. Основанная на ИНС модель с приемлемой точностью предсказывает состояния расчетных блоков моделируемой системы в произвольный момент времени (с известными ограничениями) на основе только начальных условий: свойств гетерогенной проницаемости среды и размещения источников и стоков. Предложенная модель требует на порядки меньшего процессорного времени в сравнении с классическим численным методом, который послужил критерием оценки эффективности обученной модели. Архитектура ИНС включает ряд подсетей, обучаемых в различных комбинациях на нескольких наборах обучающих данных. Для обучения ИНС в рамках многоэтапной процедуры применены техники состязательного обучения и переноса весов из обученной модели.

Ключевые слова: имитационное моделирование, нейросетевые модели физических процессов, суррогатное моделирование, гидродинамика, пористая среда, сверточные нейронные сети, состязательное обучение.

УДК: 532.5

Поступила в редакцию: 16.04.2021
Исправленный вариант: 23.06.2021
Принята в печать: 30.06.2021

DOI: 10.20537/2076-7633-2021-13-4-779-792



© МИАН, 2025