RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерные исследования и моделирование // Архив

Компьютерные исследования и моделирование, 2022, том 14, выпуск 2, страницы 399–416 (Mi crm975)

Эта публикация цитируется в 2 статьях

МАТЕМАТИЧЕСКИЕ ОСНОВЫ И ЧИСЛЕННЫЕ МЕТОДЫ МОДЕЛИРОВАНИЯ

Stochastic optimization in digital pre-distortion of the signal

[Стохастическая оптимизация в задаче цифрового предыскажения сигнала]

A. V. Alpatova, E. A. Petersb, D. A. Pasechnyukc, A. M. Raigorodskiic

a Samara Lyceum of information technologies (Basic school of the RAS), 14a Bol’nichnaya st., Samara, 443096, Russia
b CCSETC at KuzSTU «UnicUm», 117 Krasnoarmeyskaya st., Kemerovo, 650000, Russia
c Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia

Аннотация: В данной статье осуществляется сравнение эффективности некоторых современных методов и практик стохастической оптимизации применительно к задаче цифрового предыскажения сигнала (DPD), которое является важной составляющей процесса обработки сигнала на базовых станциях, обеспечивающих беспроводную связь. В частности, рассматривается два круга вопросов о возможностях применения стохастических методов для обучения моделей класса Винера–Гаммерштейна в рамках подхода минимизации эмпирического риска: касательно улучшения глубины и скорости сходимости данного метода оптимизации и относительно близости самой постановки задачи (выбранной модели симуляции) к наблюдаемому в действительности поведению устройства. Так, в первой части этого исследования внимание будет сосредоточено на вопросе о нахождении наиболее эффективного метода оптимизации и дополнительных к нему модификаций. Во второй части предлагается новая квази-онлайн-постановка задачи и, соответственно, среда для тестирования эффективности методов, благодаря которым результаты численного моделирования удается привести в соответствие с поведением реального прототипа устройства DPD. В рамках этой новой постановки далее осуществляется повторное тестирование некоторых избранных практик, более подробно рассмотренных в первой части исследования, и также обнаруживаются и подчеркиваются преимущества нового лидирующего метода оптимизации, оказывающегося теперь также наиболее эффективным и в практических тестах. Для конкретной рассмотренной модели максимально достигнутое улучшение глубины сходимости составило 7 % в стандартном режиме и 5 % в онлайн-постановке (при том что метрика сама по себе имеет логарифмическую шкалу). Также благодаря дополнительным техникам оказывается возможным сократить время обучения модели DPD вдвое, сохранив улучшение глубины сходимости на 3 % и 6 % для стандартного и онлайн-режимов соответственно. Все сравнения производятся с методом оптимизации Adam, который был отмечен как лучший стохастический метод для задачи DPD из рассматриваемых в предшествующей работе [Pasechnyuk et al., 2021], и с методом оптимизации Adamax, который оказывается наиболее эффективным в предлагаемом онлайн-режиме.

Ключевые слова: цифровое предыскажение, обработка сигнала, стохастическая оптимизация, онлайн-обучение.

УДК: 519.856

Поступила в редакцию: 15.01.2022
Принята в печать: 13.02.2022

Язык публикации: английский

DOI: 10.20537/2076-7633-2022-14-2-399-416



Реферативные базы данных:


© МИАН, 2024