RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерные исследования и моделирование // Архив

Компьютерные исследования и моделирование, 2022, том 14, выпуск 4, страницы 767–779 (Mi crm997)

СПЕЦИАЛЬНЫЙ ВЫПУСК

Стохастическая формализация газодинамической иерархии

С. В. Богомолов

Московский государственный университет имени М. В. Ломоносова, Россия, 119991, Москва, ГСП-1, Ленинские горы, д. 1, стр. 52, факультет ВМК

Аннотация: Математические модели газовой динамики и ее вычислительная индустрия, на наш взгляд, далеки от совершенства. Мы посмотрим на эту проблематику с точки зрения ясной вероятностной микромодели газа из твердых сфер, опираясь как на теорию случайных процессов, так и на классическую кинетическую теорию в терминах плотностей функций распределения в фазовом пространстве; а именно, построим сначала систему нелинейных стохастических дифференциальных уравнений (СДУ), а затем обобщенное случайное и неслучайное интегро-дифференциальное уравнение Больцмана с учетом корреляций и флуктуаций. Ключевыми особенностями исходной модели являются случайный характер интенсивности скачкообразной меры и ее зависимость от самого процесса.
Кратко напомним переход ко все более грубым мезо-макроприближениям в соответствии с уменьшением параметра обезразмеривания, числа Кнудсена. Получим стохастические и неслучайные уравнения, сначала в фазовом пространстве (мезомодель в терминах СДУ по винеровским мерам и уравнения Колмогорова–Фоккера–Планка), а затем в координатном пространстве (макроуравнения, отличающиеся от системы уравнений Навье–Стокса и систем квазигазодинамики). Главным отличием этого вывода является более точное осреднение по скорости благодаря аналитическому решению стохастических дифференциальных уравнений по винеровской мере, в виде которых представлена промежуточная мезомодель в фазовом пространстве. Такой подход существенно отличается от традиционного, использующего не сам случайный процесс, а его функцию распределения. Акцент ставится на прозрачности допущений при переходе от одного уровня детализации к другому, а не на численных экспериментах, в которых содержатся дополнительные погрешности аппроксимации.
Теоретическая мощь микроскопического представления макроскопических явлений важна и как идейная опора методов частиц, альтернативных разностным и конечно-элементным.

Ключевые слова: уравнение Больцмана, уравнение Колмогорова–Фоккера–Планка, уравнение Навье–Стокса, уравнения стохастической газодинамики и квазигазодинамики, стохастические дифференциальные уравнения по бернуллиевой и винеровской мерам, методы частиц.

УДК: 519.8

Поступила в редакцию: 30.12.2021
Исправленный вариант: 08.03.2022
Принята в печать: 08.03.2022

DOI: 10.20537/2076-7633-2022-14-4-767-779



© МИАН, 2024