RUS  ENG
Полная версия
ЖУРНАЛЫ // Дискретный анализ и исследование операций // Архив

Дискретн. анализ и исслед. опер., сер. 1, 2003, том 10, выпуск 3, страницы 54–66 (Mi da137)

Две задачи на наследственных системах

В. П. Ильев, А. С. Талевнин

Омский государственный университет им. Ф. М. Достоевского

Аннотация: Исследуются задачи о максимальном независимом и минимальном зависимом множестве наследственной системы, которые могут быть рассмотрены как задачи о максимальном независимом множестве вершин и минимальном вершинном покрытии в гиперграфе соответственно. Для приближенного решения невзвешенной задачи о независимом множестве предложен алгоритм градиентного типа. В предположении, что гиперграф не содержит ребер мощности 1, доказано, что этот алгоритм всегда дает решение, которое не более чем в $(\bar d+2)/2$ раз хуже оптимального, где $\bar d$ – средняя степень вершин гиперграфа. Показана эквивалентность задачи о минимальном зависимом множестве задаче о покрытии множества, что позволяет применить для ее решения известный алгоритм Хватала. Этот алгоритм находит решение, отличающееся от оптимального не более чем в $1+\ln\Delta$ раз, где $\Delta$ – максимальная степень вершин гиперграфа.

УДК: 519.8

Статья поступила: 15.05.2003
Переработанный вариант: 06.06.2003



Реферативные базы данных:


© МИАН, 2024