Аннотация:
Дается описание крайних точек многогранника Вебера, представляющего собой совокупность $d$-распределений, связанных с монотонными операторами Харшаньи. Полученные результаты используются для вероятностного представления указанных
операторов, а также для исследования некоторых свойств таких решений теории игр, как ядро, множество Вебера и взвешенные значения Шепли. В частности, устанавливается сильная монотонность $d$-распределений Вебера и предлагается более простое доказательство теоремы о строении ядер выпуклых кооперативных игр в терминах соответствующих дележей Харшаньи.
Библиогр. 25.