Аннотация:
Тривиальная нижняя граница для 2-дистанционного хроматического числа $\chi_2(G)$ любого графа $G$ с максимальной степенью $\Delta$ равна $\Delta+1$. Известно, что $\chi_2=\Delta+1$, если обхват $g$ не меньше 7, а $\Delta$ достаточно велико. Существуют примеры графов со сколь угодно большой $\Delta$ и обхватом $g\le6$, для которых $\chi_2(G)\ge\Delta+2$. В статье доказана 4-раскрашиваемость плоских субкубических графов с $g\ge23$, что усиливает аналогичный результат О. В. Бородина, А. О. Ивановой и Т. К. Неустроевой (2004) и Дворжака, Шкрековски и Танцера (2008) для $g\ge24$. Ил. 2, библиогр. 20.