Аннотация:
Для 2-дистанционного хроматического числа графа $G$ с максимальной степенью $\Delta$ нижняя граница равна $\Delta+1$. Известно, что если $G$ планарен, а его обхват не меньше 7, то при достаточно большой $\Delta$ эта оценка достигается, но при обхвате 6 это не так. В статье доказано, что если граф $G$ с обхватом 6 планарен, каждое его ребро инцидентно вершине степени 1 или 2, а $\Delta\geqslant 179$, то $\chi_2(G)=\Delta+1$.
УДК:519.71
Статья поступила: 22.12.2004 Переработанный вариант: 13.06.2005