Аннотация:
Совершенный двоичный код $C$ длины $n=2^k-1$ называется аффинно $3$-систематическим, если в пространстве $\{0,1\}^n$ существует трёхмерное подпространство $L$ такое, что любой его смежный класс $L+u$ либо не пересекается с кодом $C$, либо пересекается с ним ровно по одному элементу. В противном случае код $C$ называется аффинно $3$-несистематическим. В настоящей работе строятся аффинно $3$-несистематические коды длины $n=2^k-1$, $k>4$. Библиогр. 11.