Аннотация:
Подмножество $C$ в бесконечномерном двоичном кубе называется совершенным двоичным кодом c расстоянием 3, если все шары единичного радиуса (в метрике Хемминга) с центрами из $C$ попарно не пересекаются и их объединение покрывает этот двоичный куб. Аналогичным образом определяется совершенный код в нулевом слое, состоящем из всех векторов бесконечномерного двоичного куба, имеющих конечные носители. В работе доказывается, что мощность всех классов эквивалентности совершенных двоичных кодов в нулевом слое бесконечномерного двоичного куба равна континууму, а мощность классов эквивалентности совершенных двоичных кодов во всём таком кубе равна гиперконтинууму. Библиогр. 9.
Ключевые слова:совершенный двоичный код, код Хемминга, код Васильева, компонента, континуум, гиперконтинуум.
УДК:519.8
Статья поступила: 31.03.2016 Переработанный вариант: 29.08.2016