Аннотация:
Булевы функции вообще и булевы полиномы (полиномы Жегалкина, алгебраические нормальные формы (АНФ)), в частности, — предмет теоретических и прикладных исследований в различных областях информатики. В работе рассматриваются линейные преобразования пространства булевых полиномов от $n$ переменных, одним из следствий которых является получение результатов, касающихся проблемы нахождения минимальной степени аннигилятора для заданного булева полинома. Эта задача является актуальной в различных аналитических и алгоритмических аспектах криптографии. Булевы полиномы и их комбинаторные свойства изучаются в дискретном анализе. Теоретические основы информационной безопасности включают изучение свойств булевых полиномов в связи с вопросами криптографии. В работе доказана теорема о минимальной степени аннигилятора. Описан класс булевых полиномов, для которых степень аннигилятора не превосходит единицы. Приведён ряд комбинаторных характеристик, связанных со свойствами пространства булевых полиномов. Даны оценки минимальной степени аннигилятора. Рассмотрен случай симметрических полиномов. Библиогр. 26.