Аннотация:
Две известные гипотезы о 3-раскрашиваемости плоских графов состоят в том, что любой плоский граф без циклов длины 4 и 5 является 3-раскрашиваемым, а также существует такое $d>3$, что любой плоский граф с минимальным расстоянием не меньше $d$ между
3-циклами также 3-раскрашиваем. Ни одна из этих гипотез до сих пор не подтверждена и не опровергнута. В настоящей статье доказано, что если плоский граф не имеет 5-циклов и минимальное расстояние между 3-циклами не меньше 3, то такой граф 3-раскрашиваем.