Аннотация:
Исследуется оператор $\mathscr{A}$, действующий в $l^2(\mathbb{Z})$ по формуле $(\mathscr{A}u)_l=u_{l+1}+u_{l-1}+\lambda e^{-2\pi i(\theta+\omega l)}u_l$. Здесь $l$ – целочисленная переменная, а $\lambda>0$, $\theta\in[0,1)$ и $\omega\in(0,1)$ – параметры. При $\omega\notin\mathbb{Q}$ он является простейшим несамосопряженным квазипериодическим оператором. С помощью перенормировочного подхода описана геометрия его спектра, на спектре вычислен показатель Ляпунова, описаны условия, при которых спектр является чисто непрерывным либо дополнительно возникает точечный спектр.