Аннотация:
Получены точные априорные оценки решений нелинейного интегро-дифференциального уравнения вольтерровского типа с суммарно-разностным ядром в конусе пространства непрерывных на положительной полуоси функций. На основе этих оценок методом весовых метрик доказана глобальная теорема о существовании, единственности и способе нахождения нетривиального решения указанного уравнения. Показано, что это решение можно найти методом последовательных приближений пикаровского типа и дана оценка скорости их сходимости в терминах весовой метрики. Указаны условия, при которых существует только тривиальное решение. Приведены примеры, иллюстрирующие полученные результаты.