Аннотация:
Как известно [1–3], нахождение достаточного количества тензорных инвариантов (не только первых интегралов) позволяет точно проинтегрировать систему дифференциальных уравнений. Например, наличие инвариантной дифференциальной формы фазового объема позволяет уменьшить количество требуемых первых интегралов. Для консервативных систем этот факт естественен, но для систем, обладающих притягивающими или отталкивающими предельными множествами, не только некоторые первые интегралы, но и коэффициенты имеющихся инвариантных дифференциальных форм должны, вообще говоря, включать функции, обладающие существенно особыми точками (см. также [4–6]). В работе для рассматриваемого класса динамических систем предъявлены полные наборы инвариантных дифференциальных форм для однородных систем на касательных расслоениях к гладким конечномерным многообразиям.