Аннотация:
В работе рассматривается вопрос о выборе начального приближения при решении задачи восстановления распределения скоростей в гетерогенной сплошной среде с помощью методов градиентной оптимизации. Для описания поведения среды используется система уравнений акустики, для решения прямой задачи используется конечно-разностная схема. В качестве метода градиентной оптимизации используется L-BFGS-B. Для вычисления градиента функционала ошибки по параметрам среды используется метод сопряженных переменных состояния. Построение начального приближения для градиентного метода выполняется при помощи сверточной нейронной сети, обученной предсказывать распределение скоростей в среде по волновому отклику от нее. В работе показано, что нейронная сеть, обученная на откликах от простых слоистых структур, может быть успешно использована при решении задачи инверсии для существенно более сложной модели Мармузи.