Аннотация:
Получены необходимые и достаточные условия внутренней устойчивости формаций, динамика которых определяется линейными дифференциальными уравнениями. При этом в качестве классов допустимых управлений для лидеров выбраны программные управления, а для объектов, имеющих ведущих – аффинные обратные связи, зависящие от состояния самого объекта и состояний его ведущих. Полученные условия легко проверяемы и состоят из требований стабилизируемости пары матриц для уравнений ведомых объектов, гурвицевости и совпадения матриц для лидеров в случае многолидерности, разрешимости некоторых линейных уравнений и ограничений типа равенств на вектора, задающие требуемое взаимное расположение между ведомым и ведущим. Кроме того, описан весь класс управлений, обеспечивающих выполнение свойства линейной внутренней устойчивости. Опираясь на полученные условия, удалось показать, что внутренней устойчивостью могут обладать практически только однолидерные формации. В классе формаций с одним лидером выделен подкласс (формации, граф которых является входящим деревом), в котором не возникает ограничений типа равенств, являющихся основным препятствием для внутренней устойчивости многолидерных формаций.