RUS  ENG
Полная версия
ЖУРНАЛЫ // Discrete & Computational Geometry // Архив

Discrete Comput. Geom., 2014, том 51, выпуск 3, страницы 650–665 (Mi dcg2)

Эта публикация цитируется в 1 статье

Deformations of period lattices of flexible polyhedral surfaces

A. A. Gaifullinabcd, S. A. Gaifullince

a Demidov Yaroslavl State University, Yaroslavl, Russia
b Steklov Mathematical Institute, Moscow, Russia
c Lomonosov Moscow State University, Moscow, Russia
d Kharkevich Institute for Information Transmission Problems, Moscow, Russia
e Higher School of Economics, Moscow, Russia

Аннотация: At the end of the 19th century Bricard discovered the phenomenon of flexible polyhedra, that is, polyhedra with rigid faces and hinges at edges that admit nontrivial flexes. One of the most important results in this field is a theorem of Sabitov, asserting that the volume of a flexible polyhedron is constant during the flexion. In this paper we study flexible polyhedral surfaces in $\mathbb{R}^3$, doubly periodic with respect to translations by two non-collinear vectors, that can vary continuously during the flexion. The main result is that the period lattice of a flexible doubly periodic surface that is homeomorphic to the plane cannot have two degrees of freedom.

Поступила в редакцию: 02.06.2013
Исправленный вариант: 13.01.2014
Принята в печать: 18.01.2014

Язык публикации: английский

DOI: 10.1007/s00454-014-9575-8



Реферативные базы данных:


© МИАН, 2024