Аннотация:
В пространстве $L_2[0,\infty)$ рассматривается самосопряженный дифференциальный оператор, порождаемый выражением $l(y)\equiv(-1)^nd^{2n}y/(dx)^{2n}+xy$, $n\in\mathbb N$, и общими краевыми условиями в точке $x=0$. В случае нечетного п выписывается полное асимптотическое разложение спектра оператора и методом
Лидского–Садовничего введения дзета-функции, ассоциированной с рассматриваемым оператором, вычисляются регуляризованные следы всех порядков.
Библиогр. 5 назв.